RNA viruses, renowned for their high mutation rates, undergo rapid evolution. Consequently, genotypes harbouring mutations conferring drug resistance can emerge swiftly. A virus strain is deemed 'resistant' to a drug if it can replicate in the body despite the presence of the drug at concentrations that inhibit replication of 'sensitive' strains. Drug-resistant virus isolates typically exhibit gene mutations encoding the proteins the drug targets. Most mutations leading to drug resistance in HIV-1 involve changes in amino acids. However, some mutations can also involve deletions or insertions of genetic material. In the HIV-1 virus, mutations in the reverse transcriptase gene that make it resistant to nucleoside analogues (such as AZT) occur in different specific codons compared to mutations that confer resistance to non-nucleoside inhibitors (like nevirapine). This difference is because these two classes of drugs target distinct regions within the reverse transcriptase enzyme. This specificity in mutation locations highlights how different drugs can influence HIV-1's genetic makeup differently, affecting its ability to resist treatment.
Clinical challenges arise when drug-resistant virus strains develop in patients undergoing treatment and when these resistant strains are transmitted to others. When drug-resistant HIV strains emerge during treatment, patients may switch to alternative medications. Initially, AZT was widely used for HIV treatment but resistance quickly developed. Similar challenges arose with other single-drug therapies. The current standard for treating HIV infection involves highly active antiretroviral therapy (HAART), which combines different classes of drugs like reverse transcriptase inhibitors and protease inhibitors.
Monitoring the effectiveness of HIV treatment involves measuring HIV RNA levels in the blood. HAART typically leads to a rapid reduction in HIV RNA within the first 10 days, followed by a slower decline over weeks. In some patients, HIV RNA stabilizes at low levels (5-50 copies/ml), while in others, it drops to less than 5 copies/ml over time.
HAART also reduces HIV levels in the seminal fluid of men and the genital secretions of women. While it doesn't eradicate HIV from the body, the virus persists in latent forms in macrophages, memory CD4 T cells, and possibly in immune-privileged sites like the brain and testes. Despite this persistence, HAART has significantly lowered AIDS-related mortality in developed countries. Additionally, treating HIV-positive women has substantially decreased mother-to-child transmission risks.
Overall, HAART represents a pivotal advancement in managing HIV infection, offering optimism through effective suppression of the virus and improved quality of life for patients.
No comments:
Post a Comment